正誤表

正誤表			
頁	行など	誤	訂正
6	上から8行	体積を v ₁ , v ₂ とすると,	<u>比</u> 体積を v ₁ , v ₂ とすると,
6	下から1行	体積の減少率を求めなさい.	体積の減少率を求めなさい. ただし, 海水の体
			積弾性係数を 2.23GPa とする.
7	上から1行	海水の体積弾性係数は表 1.6 から K=2.23GPa で	<u></u> 海水の体積弾性係数は <i>K</i> =2.23GPa であるので
		あるので	
9	上から2行	分子の運動により波線の上	分子の運動により破線の上
10	図 1.4	<u></u>	水の動粘度の曲線の 100℃以上の部分を消去
11	下から1行		単位を[rad/min]に訂正
		$2\pi n [rad/s]$	
		$V = \frac{2\pi n [\text{rad/s}]}{60 [\text{sec}]} \times \cdots$	$V = \frac{2\pi n [\text{rad/min}]}{60 [\text{sec}]} \times \cdots$
12	上から2行	L J	符号を正に訂正
12	工7/1921	du V[m/s]	, · · · - · · · ·
		$\frac{\mathrm{d}u}{\mathrm{d}y} = -\frac{V[\mathrm{m/s}]}{(d_2 - d_1)/2[\mathrm{m}]} = \cdots$	$\frac{\mathrm{d}u}{\mathrm{d}y} = \frac{V[\mathrm{m/s}]}{(d_2 - d_1)/2[\mathrm{m}]} = \cdots$
		$\frac{u_2 - u_1}{2} = \frac{u_2 - u_1}{2}$	2 1
12	上から4行		負の符号を追記
		$F - Su \frac{\mathrm{d}u}{\mathrm{d}u} - \dots$	E = G u du
		$F = S\mu \frac{\mathrm{d}u}{\mathrm{d}y} = \cdots$	$F = -S\mu \frac{\mathrm{d}u}{\mathrm{d}y} = \cdots$
15	下から2行	ただし、ワイヤと水の間の接触角は	ただし、浮力を無視しワイヤと水の間の接触角
	1 10 2 = 10	12/2 0) 1 1 2/31 2/1/3 2/3/2/3/00	t
16	式(2.2)の次		なお、圧力は面に垂直に内側に作用する(内側
	に追加		を正とする)・
27			右の図の、Oy軸からdAまでの距離xを追記
30		水門の重心まわりの慣性モーメントは、	水門の重心まわりの断面二次モーメントは、
40		ho AVは単位面積を通過する	ho AVは単位時間に通過する
40		AV は単位面積を通過する	AV は単位時間に通過する
40		$\rho AV + \partial (\rho AV) \partial s \geq t \delta$.	$\rho AV + [\partial (\rho AV)/\partial s] ds$ となる.
42	式(3.10)	() - () () () ()	右辺第1項の常微分を偏微分に訂正
	(2723)	$\partial V = (\partial V) = 1 (dp) (dz)$	
		$\left \frac{\partial V}{\partial t} + V \left(\frac{\partial V}{\partial s} \right) \right = -\frac{1}{\rho} \left(\frac{\mathrm{d}p}{\mathrm{d}s} \right) - g \left(\frac{\mathrm{d}z}{\mathrm{d}s} \right)$	$\left \frac{\partial V}{\partial t} + V \left(\frac{\partial V}{\partial s} \right) \right = -\frac{1}{\rho} \left(\frac{\partial p}{\partial s} \right) - g \left(\frac{\mathrm{d}z}{\mathrm{d}s} \right)$
42	÷(2.11)	or (os) p (us)	左辺の偏微分を常微分に訂正
42	式(3.11)	(3V) 1 (4-)	
		$V\left(\frac{\partial V}{\partial s}\right) = -\frac{1}{\rho}\left(\frac{\mathrm{d}p}{\mathrm{d}s}\right) - g\left(\frac{\mathrm{d}z}{\mathrm{d}s}\right)$	$V\left(\frac{\mathrm{d}V}{\mathrm{d}s}\right) = -\frac{1}{\rho}\left(\frac{\partial p}{\partial s}\right) - g\left(\frac{\mathrm{d}z}{\mathrm{d}s}\right)$
53	上から1行	自由渦から十分離れた無限遠での速度を	自由渦はどの流線においてもエネルギーは等
			しいため, 自由渦から十分離れた無限遠での速
			度を
53		の位置でベルヌーイの式をたてると、	の位置においてエネルギーを等しくおくと、
55		これを <u>rで</u> 積分すると,	これを積分すると,
	の行		
58	上から3行	$p_1A_1\sin\alpha_1-p_2A_2\cos\alpha_2$	$p_1A_1\sin\alpha_1-p_2A_2\underline{\sin}\alpha_2$
59	上から3行	$\cdots = \frac{\pi}{4} \pm 0.2^2 \times V_2$	$\cdots = \frac{\pi}{4} \times 0.2^2 \times V_2$
		•	•
59	下から9行	$\cdots = 1.34 \times 10^{3} [Pa]$	$\cdots = 134 \times 10^{3} [Pa]$
59		力の水平および鉛直方向成分を	力の <u>x</u> および <u>y</u> 方向成分を
64	上から8行	孔の総面積が 2 <u>m³</u> で,	孔の総面積が 2 <u>m</u> ² で,
64	上から11行		問題番号の(3-3)を図 3.29 の次の行へ移す
70	上から6行		$\Delta p/\gamma$ を削除
		$\Delta p/(\rho g) = \underline{\Delta p/\gamma} = h = \cdots$	$\Delta p/(\rho g)=h=\cdots$
_	上から12行	図 5.10) が用意されている.	図 5.12) が用意されている.
	下から4行	$\pi_2 = \mu ud/\rho = Re$	$\pi_2 = \rho ud/\mu = Re$
72	式(4.11)		粘性項の中の2回微分の位置を訂正
		1	l

		$\left(\partial^2 u \partial u^2\right)$	$\left(\partial^2 u \partial^2 u \right)$
		$\cdots + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial u^2}{\partial y^2} \right)$	$\cdots + v \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right)$
		(0.11 0)	()
		慣性力は $ma=\rho m \times \cdots$	慣性力は $ma=\rho L^3 \times \cdots$
	式(4.15)	$Re=\mu UL/(\rho U^2L^2)=\cdots$	$Re = \rho \ U^2 L^2 / (\mu \ UL) = \cdots$
73	下から6行	$Fr = \rho U^2 L/(\rho L^3 g) = \cdots$	$Fr = \rho U^2 L^2 / (\rho L^3 g) = \cdots$
73	下から1行	(問題 4 <u>.</u> 2,参照).	(問題 4 <u></u> 2,参照).
74		$M = \rho U^2 L/(KL^2) = \cdots$	$M = \rho U^2 L^2 / (KL^2) = \cdots$
74	上から9行	(問題 <u>4.5</u> , <u>4.6</u> 参照).	(問題 <u>4-4</u> , <u>4-5</u> 参照).
77	下から7行	[式(7. <u>20</u>)] で導かれている.	[式(7. <u>19</u>)] で導かれている.
78	上から11行	連続の式(7. <u>21</u>)とともに	連続の式(7. <u>18</u>)とともに
78	下から9行	円筒座標系 (r, θ, z) で表すと	円筒座標系 (r, θ, x) で表すと
79	下から10行	円管の壁面上(r=0)では	円管の壁面上(r= <u>R</u>)では
79	下から9行	積分定数は <u>C-0</u> となり,	
			積分定数は $C_2 = -\frac{1}{4\mu} \left(\frac{\partial p}{\partial x} \right) R^2 $ となり、
80	下から4行	式(5.12)と式(5.13)から,	式(5.11)と式(5.13)から、
81	下から1行		式(5.18)の中のu ⁺ を全てu [*] に訂正
82	上から1行	\underline{u}^{+} は摩擦速度(friction velocity)であり、	\underline{u}^* は摩擦速度(friction velocity)であり、
82	上から2行	. Γ	τ τ
		$u^+ = \sqrt{\frac{\tau_w}{\alpha}} = \cdots$	$u^* = \sqrt{\frac{\tau_w}{\rho}} = \cdots$
0.6		V P	V P
86	下から9行	式(5. <u>30</u>)を ε m/ν>>1 のもとに積分すると	式(5. <u>29</u>)を ε _m / ν >>1 のもとに積分すると
87	図 5.6	2 - 2 - 1/5	図 5.6 の u ⁺ を全て u [*] に訂正
	式(5.41)	$\cdots = 0.072\underline{R}^{-1/5}$	\cdots =0.072 $\underline{Re}^{-1/5}$
120	下から11行	圧力差を p とすると $p/(\rho g)=h-z-z_0$ なので、	圧力差を p とすると p /(ρ g)= $h-z$ なので,
120	下から9行	$H_{t} = \frac{V^2}{2g} + \frac{p}{\rho g}z + z_0$	$H_{t} = \frac{V^2}{2g} + \frac{p}{\rho g} + z + z_0$
		$H_{t} = \frac{1}{2g} + \frac{1}{\rho g}z + z_{0}$	$H_{t} = \frac{1}{2g} + \frac{1}{\rho g} + z + z_{0}$
		2	
		$=\frac{V^2}{h}+h$	$=\frac{V^2}{2g}+h+z_0$
		$= \frac{V^2}{2g} + h$	
120	下から7行	無関係となる. 断面積を A 、流量を Q とすると	無関係となる. いま, 簡単化のため底面と基準
			<u>水平面を等しくとり(z₀=0)</u> , 断面積を A, 流量
			を
122	上から7行	単位幅当たりの流量を q とすると,	単位幅当たりの流量を q とすると、 $運動量の定$
	-		<u>理から,</u>
123	式(4)	$\rho QV_1 - \rho QV_2 = \cdots$	$\rho QV_2 - \rho QV_1 = \cdots$
123	式(7)	ΔΗ	ΔH
		$ = \left\{ \frac{1}{2g} \left(\frac{Q}{bh_2} \right)^2 + h_2 \right\} - \left\{ \frac{1}{2g} \left(\frac{Q}{bh_1} \right)^2 + h_1 \right\} $	$ = \left\{ \frac{1}{2g} \left(\frac{Q}{bh_1} \right)^2 + h_1 \right\} - \left\{ \frac{1}{2g} \left(\frac{Q}{bh_2} \right)^2 + h_2 \right\} $
		$\begin{bmatrix} 2g(bn_2) & - \end{bmatrix} \begin{bmatrix} 2g(bn_1) & - \end{bmatrix}$	$\begin{bmatrix} 2g(bn_1) & 1 \\ 2g(bn_2) & 1 \end{bmatrix}$
		O^2 1	
		$= \frac{Q^2}{2gb^2} \frac{1}{h_2^2 - h_1^2} + h_2 - h_1$	$ = \left\{ \frac{Q^2}{2gb^2} \left(\frac{1}{h_1^2} - \frac{1}{h_2^2} \right) + h_1 - h_2 \right\} $
		2 1	$\left \begin{array}{cccccccccccccccccccccccccccccccccccc$
		$= \frac{10^2}{2 \times 9.807 \times 2^2} \frac{1}{1.813^2 - 1^2} + 1.813 - 1$	
		$2 \times 9.807 \times 2^2 \ 1.813^2 - 1^2$	$\left - \right = \frac{10^2}{10^2} \left(\frac{1}{1} - \frac{1}{10^2} \right)_{11} = \frac{1}{100} \left \frac{1}{100} \right _{11} = \frac{1}{1$
		=1.370 [m]	$ = \left\{ \frac{10^2}{2 \times 9.807 \times 2^2} \left(\frac{1}{1^2} - \frac{1}{1.813^2} \right) + 1 - 1.813 \right\} $
			=0.074 [m]
123	下から1行	この跳水に伴って失う損失ヘッドを求めなさ	この跳水に伴って失う水路単位幅当たりの損
123	14 7111	に い。	失ヘッドを求めなさい.
126	上から6行	(x + dx, y)での近似の結果は	(x, y + dy)での近似の結果は
127	図 7.3 の左		F
12/	図 7.5 の江	$A' \left[\left(u + \frac{\partial u}{\partial x} dx \right) dt, \left(v + \frac{\partial v}{\partial x} dx \right) \right]$	$A' dx + \left(u + \frac{\partial u}{\partial x} dx\right) dt, \left(v + \frac{\partial v}{\partial x} dx\right) dt$
	· > KI	$\begin{bmatrix} \begin{pmatrix} \partial x \end{pmatrix} & \begin{pmatrix} \partial x \end{pmatrix} \end{bmatrix}$	$\begin{bmatrix} & (& \partial x &) & (& \partial x &) \end{bmatrix}$

127	図 7.3 の右	(au au	(34 34)
	の図	$A'\left(\frac{\partial u}{\partial x}dxdt,\frac{\partial v}{\partial x}dxdt\right)$	$A' \left(dx + \frac{\partial u}{\partial x} dx dt, \frac{\partial v}{\partial x} dx dt \right)$
127	図 7.4 の左		C' , B'
	の図	C C' B B'	
		//	C B
		↑ O A A'	A 0
		1 O AA'	1 O A A'
127	下から 3 行	(1 + 2 / 2 + 13 + 1 + 1	常微分記号 d を立体に訂正
120	目 てみと 10 年	$\cdots (dy + \partial v / \partial y \underline{d}y dt) - dx \times dy$	\cdots $(dy + \partial v / \partial y \underline{d}y dt) - dx \times dy$
128	下から10行目	θ ₁ =AA'/dxd <i>t</i> = ∂v / ∂x, C点ではθ ₂ =CC'/dyd <i>t</i>	括弧を追記 $\theta_1 = \overline{AA}/(dxdt) = \partial v/\partial x$, C点では $\theta_2 = \overline{CC}/(dydt)$
134	<u>ロ</u> 上から1行	全体を微分すれば	全体をよで微分すれば
134	下から2行	考えている領域Vの周囲に沿った	循環 Γ は、考えている領域 V の周囲に沿った
135	図 7.11		
		$-\left(u + \frac{\partial u}{\partial y}\right) dy$	$-\left(u + \frac{\partial u}{\partial y} \mathrm{d}y\right)$
137	図 7.12	$\psi = \psi_{\rm A}$	$\phi = \phi_A$
		$ \varPsi = \varPsi_{\mathrm{B}} $	$\phi = \phi_{\rm B}$
141	上から4行	全微分 <u>が</u> 可能でこのとき <u>つぎ</u> の関係,	全微分可能でこのとき <u>次</u> の関係,
145	下から9行	y軸のプラス側に反対向きの渦がある	y 軸のプラス側 \underline{o} δ だけずれた位置に反対向き
146	⇒(7.60)		の渦がある式中の <i>「</i>を斜体に訂正
147	式(7.68), 式(7.71),		大中の17を赤色に計正
	式(7.72),		
	式(7.73)		
149	下から5行	$a^2 \left(-a^2 \right) 2 \left(-a^2 \right)$	$(2)^2 (2)^2$
		$\left \xi^2 / \left(R + \frac{a^2}{R} \right) + \eta^2 / \left(R - \frac{a^2}{R} \right) = 1 \right $	$\left \xi^{2}\left(R+\frac{a^{2}}{R}\right)^{2}+\eta^{2}\left(R-\frac{a^{2}}{R}\right)^{2}=1\right $
1.64	(2. 2) 5 HT/FF		` ,
164	(3-3)の解答 (3-5)の解答	噴出速度は, <u>19.89</u> m/s. 水受けに作用する力は,6283N.	噴出速度は、 <u>19.88</u> m/s. 水受けに作用する力は、62.83N.
165	(5-5)の解答	ブラジウスの管摩擦係数の式から摩擦損失へッ	ブラジウスの管摩擦係数の式から摩擦損失へ
103	(J-J)V > D+ D	ドは、 <u>1.909</u> m.	ッドは、 <u>1.908</u> m.
165	(5-6)の解答	摩擦損失ヘッドは, <u>0.207</u> m.	摩擦損失ヘッドは, <u>0.217</u> m.
165	(5-7)の解答	緩やかに広がる損失係数の線図からをを読み取	緩やかに広がる <u>円管の</u> 損失係数の線図から <u>ζ</u>
		り, 拡大前の速度 40.74m/s と拡大後の速度	を読み取り、拡大前の速度 40.74m/s と拡大後
		10.19m/s を用いて損失ヘッドを求めると, 19.04m.	の速度 10.19m/s <u>の速い方</u> を用いて損失ヘッド を求めると, <u>34.70</u> m.
166	(7-1)(c)の解		
	答	$\frac{p}{\rho} = \frac{p_0}{\rho} \frac{1}{2} \left(\sinh^2 x_1 \sin^2 y_1 + \dots \right) + \frac{1}{2}$ $\dots = \frac{Q}{2\pi} \ln(z^2 + h^2) y = 0$ を代入すると	$\frac{p}{\rho} = \frac{p_0}{\rho} - \frac{1}{2} \left(\sinh^2 x_1 \sin^2 y_1 + \dots \right) + \frac{1}{2}$ $\dots = \frac{Q}{2\pi} \ln(z^2 + h^2) \cdot y = 0$ を代入すると
166	(7-2)(h)の解	0 2 2	
			$\cdots = \frac{z}{2\pi} \ln(z^2 + h^2) \underline{ y=0} $ を代入すると
167	(7-2)(c)の解	$u = \frac{Q}{2\pi(z^2 + h^2)}$	$u = \frac{Q}{}$
	答	$2\pi(z^2+h^2)$	$u = \frac{Q}{2\pi(x^2 + h^2)}$
167	(7-2)(d)の解 答	$W_V = -\frac{\Gamma}{2\pi}(z - hi), W_{Vb} = \frac{\Gamma}{2\pi}(z + hi)$	$W_V = -\frac{\Gamma i}{2\pi} \ln(z - hi), W_{Vb} = \frac{\Gamma i}{2\pi} \ln(z + hi)$
167	A		$p p_0 1 $
	答	$\left \frac{p}{\rho} = \frac{p_0}{\rho} - \frac{1}{2} \left[\frac{Ih}{\pi (z^2 + h^2)^2} \right]^2$	$\left \frac{p}{\rho} = \frac{p_0}{\rho} - \frac{1}{2} \left[\frac{\Gamma h}{\pi (z^2 + h^2)} \right]^2$
167	(7-3)の解答	, , Lacon 1, 1	V _∞ (大文字) を v _∞ (小文字) に訂正
107	(パンパング作合)		v∞ (ハタエ) で v∞ (ハメエ) (c町正

. り・・・から <i>R=<u>(a+b)/2.</u>z</i> 面上では
$+\frac{v_{\infty}(a+b)^2}{4}$